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ABSTRACT

Radiative transfer is analyzed in composite materials of 2 or 3 layers
relative to evaluating ceramic materials being developed for high
temperature applications. Some ceramics are partially transparent for
radiative transfer. Their refractive indices are greater than one which
influences internal reflections and emission. The thermal behavior of
single and composite layers has been obtained in the literature by
numerical solutions of the radiative transfer equations coupled with
heat conduction, and with convection and radiation at the boundaries.
Two-flux and diffusion methods are investigated to obtain
approximate solutions using much simpler formulations than for exact
numerical solutions. The two-flux method yields excellent results for
gray and two-band spectral calculations including isotropic scattering.
If one layer is optically thick the analysis shows how the diffusion
method can be used in that layer and be coupled with the two-flux
method in an adjacent layer. Comparisons with numerical solutions
of the transfer equations show that this provides accurate temperature
distributions and heat fluxes.

NOMENCLATURE

a absorption coefficient of material in layer, m"

G coefficients defined in Eq. (17)

CON integration constant in energy equation, W/m;
CON = CON/DoT,,*

c, speed of electromagnetic propagation, m/s

D thickness of each layer in composite, m

FSFL.  blackbody fraction in small and large frequency
bands -

G flux quantity defined in Eq. (1a), W/m%, G =G/ oT,,*

GS,GL  values of G in bands at small and large frequencies

H dimensionless convection-radiation parameter, h/o'I",’

h,,h, heat transfer coefTicients at boundaries, W/m?K

k thermal conductivity, W/mK

K extinction coefficient, a + o,, m*

N conduction-radiation parameter, k/oT,’D

NOR normalization factor

n refractive index of a layer
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q heat flux, W/m?*, q = ¢/oT,,*
q radiative heat flux in composite, W/m?, g, = q/oT,,*
q.q radiative fluxes in + and - x directions, W/m?
q externally incident radiation flux, W/m?, §¢ = q¥/oT,,*
qS,qL  radiative flux in bands with small and large frequencies
R(n) function of refractive index defined in Eq. (19)
T absolute temperature, K
t dimensionless temperature, T/T,,
T, Ty gas temperatures on two sides of composite, K
X coordinate in a layer, m; X = x/D
Greek symbols
x optical coordinate in a layer Kx; xy,, optical

thickness, KD
v frequency of radiation
P reflectivity of interface
o Stefan-Boltzmann constant, W/m?K*
o, scattering coefficient in a layer, m™
Q scattering atbedo in a layer, o J(at0,) = 0/K
Subscripts ' ‘
ab..h theinterfaces of a three-layer composite (Fig. 1)
c value at cutoff frequency
D based on length D
g gas on either side of composite
h,s higher and smaller refractive indices
j index indicating j th layer in a composite
r radiative
SL spectral bands with small and large frequencies

tot total heat flux by combined conduction and radiation
v frequency dependent quantity
12 exterior quantitics at outside boundaries (Fig. 1)

INTRODUCTION

The development of ceramic materials for high temperature use is
critical for advanced aircraft engines where high thermal efficiency is
required. Some ceramics are partially transparent to radiant energy in
at least some portions of the wavelength spectrum. For high
temperature surroundings, such as in a combustion chamber, infrared



and visible radiation may penctrate into the material and provide
internal heating; this can affect internal temperatures of ceramic engine
parts and coatings.

For clevated temperature levels, radiant emission within the
material can be large. This is especially true for materials with high
refractive indices since internal emission depends on the refractive
index squared. In addition to internal emission, radiant absorption and
scattering, and heat conduction contribute to the energy transfer
process. It must be determined when radiative processes become
significant, and how large their effects are compared with conditions
when materials are assumed opaque. Another aspect is to determine
whether partial transparency can help cqualize temperatures to reduce
thermal stresses, reduce maximum temperatures, and control
temperature levels in the matenal.

In composite layers the refractive indices of the matenials produce
surface reflections that enter into the radiative transfer. Since emission
within a material depends on the square of its refractive index, internal
emission can be much larger in a ceramic than in a gas. Radiation
leaving through an interface cannot exceed that from a blackbody, and
is prevented from doing so by tota! internal reflections that occur when
radiation is passing into a material with a lower refractive index.
Internal scattering must be examined as it can influence the
temperature distribution for some conditions.

There is an extensive literature on radiative transfer in plane layers
originating from the development of theory to study radiation in stellar
and the earth's atmospheres. Another important subject studied since
the 1920's is radiation by furmnace gases. As a result, many
investigations of radiation within media have been for gases where the
refractive index is very close to one. An important area involving
higher refractive indices and hot materials with significant intemnal
emission, is predicting heat treating and cooling of glass plates
(Gardon, 1958). The literature has been briefly reviewed in our
previous work (Spuckler and Siegel, 1993, 1994). In these papers,
temperature distributions and heat flows in partially transmitting
materials with high refractive indices are predicted by analyses using
the radiative transfer equations coupled with heat conduction. The
goveming integral equations, including the scattering source function
for some of the work, are solved numerically. Each exterior boundary
is heated by radiation and convection, and diffuse interface reflections
are included. Results are given for a layer with two spectral bands in
the absorption coefficient, and for a composite of two gray layers. For
use in the development of approximate solutions, the numerical
solutions were extended in Siegel and Spuckler (1994) to a three-layer
composite including up to three spectral bands in each layer. Isotropic
scattering is included. This simulates a ceramic layer with a
reinforcing layer, or coatings of other ceramic materials for protection
against corrosive atmospheres such as combustion gases. Various
amounts of isotropic scattering are included to simulate intemal
reflections by a granular or reinforcing structure.

The formulation and solution of the exact spectral radiative transfer
cquations including scattering is rather complicated; hence it is
desirable to develop more convenient approximate methods such as the
two-flux method if these will yield accurate results. The two-flux
cquations are given in Sidall (1972), and Siegel and Howell (1992).
The two-flux method was shown in Malpica et al. (1986), and
Tremante and Malpica (1993) to give accurate results for a gray layer
with a refractive index of one between boundaries with specified
temperatures. Two-flux and diffusion solutions, and combinations of
the two for layers with optically thin and thick spectral bands, were
derived in Siegel and Spuckler (1994) for matenials with refractive
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FIG. 1 GEOMETRY AND COORDINATE SYSTEM FOR

TWO-FLUX ANALYSIS IN A COMPOSITE OF THREE
ABSORBING, = EMITTING AND SCATTERING
SEMITRANSPARENT LAYERS.

indices larger than one, and for heating conditions such that the

" boundary temperatures are not specified and must be determined

during the solution. These provide a simplified formulation, and were
found to be very accurate for a single layer by compansons with exact
solutions. In the present work further analysis is made to treat
mulitilayer composites of materials with refractive indices larger than
one. The two-flux method is found to work well for layers with optical
thicknesses less than about 20. It is joined here with the diffusion
solution for situations where there is an adjacent optically thick layer.
This yields excellent results for two band spectral calculations in
composite layers, including an optically thick layer, and with isotropic
scattering included.

ANALYSIS

The Two-Flux Method for Radiative Transfer in a Three-
Layer Gray Composite

A composite layer of absorbing, emitting, and isotropically
scattering materials has convection and incident radiation on each of
its external boundaries as shown in Fig. 1 for a three-layer region. The
two-flux method is developed here to obtain the temperature
distribution and heat flux through the composite. To begin the
development a three-layer composite of gray materials is considered.
Adjacent layers each have a different refractive index. The resulting
two-flux relations provide a foundation to analyze a larger number of
layers with banded spectral propertics. Relations are given for two
spectral bands in cach layer of a two-layer composite. The two-flux
method is also combined with the diffusion method to treat multiple
layers with one or more layers being optically thick. Results are
compared with numerical solutions of the radiative transfer equations
to determine the accuracy of the two-flux method for composites with
layers having refractive indices greater than one, The boundaries and
interfaces between layers arc assumed diffuse.

The two-flux
here correspond to the Milne-Eddington

The Two-Flux and Energy Equations.
cquations  used




approximation (Sidall, 1972, and Sicgel and Howell, 1992). The
radiative fluxes q,° and q,” are respectively in the positive and ncgative
directions as in Fig. 1; cach flux is assumed isotropic. A flux quantity
G, and the net radiative flux g, in the x direction. are related to q," and

q by,

G=2a+4,) 979 "9 (1a,0)

Equations (1a) and (1b) are solved for q,” and g, in terms of G and q,
to give the useful forms,

o=-YUE.g AL =
foal2 ’ o2l 7
The two-flux equations including scattering are given in Siegel and
Spuckler (1994) as,

(2a,b)

19, (1-Q){4n36T 4(x)- G(x)] ®

1 dG

—_——= -3 4
qt(x) )

A third relation, in addition to Eqs. (3) and (4), is the energy
cquation. For steady state conditions without internal heat sources
such as chemical or clectrical heating, the heat flow by combined
conduction and radiation, q,, is constant through the composite and
is given by,

dT (x)

= -k——"24+q(X 5
Qe & q,(x) (5)
Equations (3), (4) and (5), subject to proper boundary and interface
conditions, are to be solved for q(x), G(x), and T(x) within the layers
of the composite. An iterative solution is used, and the required forms
of the equations are now developed.

The q{x) in Eq. (5) is eliminated by using Eq. (4). The resulting
equation has a first derivative of both T(x) and G(x) and is integrated
over x in cach of the layers to yield

G(x)

J

1otXj ~

KT{x)= -9 +CON; j=123

where CON is an integration constant in each layer. Evaluating Eq.
(6) at x;=0 and x=Dj relates the values of g, and CON,; to the
boundary values of T; and G; for cach layer

G(0) )
CON is ijj(O)*——— i=1,23 (7a)
3Kj
= -kT _5P9, con i=123 (7
quDj' i j(Dj) 3K, i )J=1.2, (7b)

J

Equations (3) and (4), integrated with respect to x; in each layer,
will be used later in the forms,

a4(x) = 440)*K(1- ) f. 4o} o T(x)- Gexpldx, j=123 (8)
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G,(x) = O(0)-3K, j’o" g )%, j=123 )

Conditions at External Boundaries. The boundary conditions
are now developed. Because radiant absorption is a volume process,
in the two-flux method there is no absorption at a boundary surface
since a surface does not have any volume. Hence at each external
boundary of the composite, X, = 0 and x, = D, convection is balanced
by internal heat conduction. Since the total energy flow by radiation
and conduction is constant across the entire composite region, the g,
can be expressed at each external boundary as the sum of external
convection (which is equal to internal conduction) and internal
radiation. This yields atx, =0 and x,=D;,

Qe = 0Ty~ T1(0)) + 9(0) (10a)

= By[T5(D3)- Tl + 4,5(D3) (10b)

At each external boundary the radiative flux leaving the internal
side of the surface and going into the layer, is cqual to the sum of
transmitted externally incident flux and reflected internally incident
flux. This yiclds the relations at x, =0 and X, = D,

q,3(0) = (1- p 4,1 * Ppa(0) (11a)

05Dy = (1~ Py Mo+ P,aaD3)

Equations (2a,b) are used to climinate the q',, and q; from Eqgs.
(11a,b) to obtain expressions for G,(0) and Gy(D,) in terms of the
radiative fluxes q,(0) and q,(D,) inside the composite at the
boundaries,

(11b)

1-¢ 1+p
G(0)=4—q, - 2 2 q,,(0) (12a)
1-py 1-py
’ 1-pp o l+p
Gg(Dg) =4 qp + 2 q,g(Dg) (12b)
1-p, 1-p,

Relations at Internal Interfaces. At the interface x, =D, (x, =
0) between layers 1 and 2, the q" and q are related in terms of
transmitted and reflected energy by,

40D = (1- p )30 + p D))

At this interface there is also continuity of radiative flux and
temperature so that,

qﬂ(Dl) = qn(o) 3 Tl(Dl) = T2(0)

Equations (2a,b) are used to climinate q" and q" from Eq. (13a) and
(13b) is then used to climinate q,,(0) to give,

(13a)
(13b,c)

1-p Pot P
G (0) = —=G (D ))-2——"q,,(D)) (14a)
1-p, 1-p,

Similarly at the second internal interface X, = D, (x; = 0),



G,4(0) =

2(D 1) 2 ,1(D2) (ldb)
4 Pt

Relations for Additional Quantities. A rclation for q,, is now
obtained. Equation (6) is solved for T; in each of the layers at the
intemal interfaces. Then continuity of temperature, as in Eq. (13c), is
applied to yield at the two interfaces,

D, _1G@) CON, __ 1G.®  CON,
5 3RK g SEK, &y

Equation (15) is written for j = | and 2, and the two equations are
added to eliminate CON,. Equation (7a) for j = 1 and Eq. (7b) for j =
3 are respectively combined with Eqs. (10a) and (10b) to eliminate the
unknown surface temperatures T,(0) and T(D,). The resulting two
equations are combined with Eq. (15) to eliminate CON, and CON,.
The expression obtained is solved for q, the total heat flow by
combined conduction and radiation,

st
E G{0)-G(D) T 9,400 940y
kK, L ) h

" Qo i=12 (5

1 2

=t

(16)

Q=
D,

=1 J

g 19

1 1
—_— —
h b,

<

When the correct solution is reached in the iterative method, the
change in G across the entire composite, G,(0) - G;(D,) as given by
Eqgs. (12a,b), should equal the sum of the changes in G across each of
the layers as calculated from the integral in Eq. (9) and the change
across cach of the internal interfaces as obtained from Eqgs. (14a) and
(14b). To enforce this overall condition during the iterative solution
the q,(x) in all of the layers are normalized at each iteration by
dividing by the factor NOR obtained from this condition on G

3 Z CXif, Pl j0x;)dx;

j=1

PotPyl-p +p
+2 [ d e g](D1)+2 le f

1-p4 1-p¢ Pe
C,G,(0)- G4(D3y)

q,Dy)
NOR =

an

The C; cocfTicients arc

I-p . 1-p, I-p
C, = , Cp=——=, Cy=1.
1- Pdl Pt 1-p¢

To obtain expressions for the integration constants CON,, Egs.
(7a) and (10a) are combined to climinate T,(0) to obtain for CON,

0)- G,(0
CON , = k, T'1+q"( )t |, SO (182)
b, 3K,

Similarly CON,; is obtained by eliminating T,(D;) from Eqgs. (7b) and
(10b),

- G
CON = 4Dy +ky | T,,o 227 2009 |, T529) 1
b, 3K,

With CON, known from Eq. (18a), an expression for CON, is found
by using Eq. (7a) for j = 2 and climinating T,(0) by noting that it
equals T,(D,) found from Eq. (7b). This gives,

x 0) G
CON, = —2(CON ;- q, D))+ G0 G,®y (18¢)

, 3 kX, KK,

Solution Procedure by lteration for a Gray Three-Layer
Composite. The previous relations are solved by iteration to obtain
the temperature distribution in the composite and the total heat flow.
Before carrying out the solution the equations were placed in
dimensionless form using the dimensionless parameters and variables
in the Nomenclature. Dimensionless forms are not given here as they
somewhat duplicate the previous relations. Some dimensionless forms
are given in the next section for a spectral two-band solution.

The iterative solution (given in terms of dimensionless quantities)
begins by guessing values of the dimensionless radiative fluxes §,(X;)
forj=123. Using Gl(O) and G,(]) calculated from Egs. (12a,b), the
4{X;) are normalized by dividing by NOR from Eq. (17), The ,(X,)
dnstnbuuon is then obtained from Eq. (9); this also gives G,(l) Using

(1), the G. (0) is obtained from (14a), and the G,(X,) distribution is
calculated from Eq. (9). The changc in G across the second internal
interface is found from Eq. (14b), and G,(X,) evaluated from Eq. (9).
The g is calculated from Eq. (16), and the CaN forj=123 are
found from Eqs. (18a,b,c). The t(X;) forj = 1,2,3 are evaluated from
Eq. (6).. New g,(X;) arc obtained from Eq. (8) using the starting
condition in each successive layer that g, at the beginning of that layer
equals g, calculated at the end of the previous layer.

To begin a new iteration a damping factor is applied between the
new and old §;(X;) to keep the iterative method stable. A small
damping factor, such as 0.001, is needed; less damping is required in
layers with scattering. Computing time for a solution converged to a
relative error of 10 depends on the integration method used in Eqgs.
(8) and (9). Solutions using the trapezoidal rule took less than 6
seconds on a VAX computer. The numerical solution of the radiative
transfer equations using a modified program from Spuckler and Siegel
(1994) required at least 12 times more computing time.

Surface reflections were modeled by using integrated averages of
the Fresnel reflection relations. For diffuse incidence this gives (Siegel
and Howell, 1992, p. 113),

o riey < 1,007 D@D p3@?-1y n_-l)
p@) = R(n) = - el @il \arl
_2%nl+2n-1),_ Sn'(at+1)
@2+1)n*-1) (*+1)n*-1)

n=n/fo (19)

In(n)

Equation (19) is for reflection by a material with higher refractive
index; n, and n, arc the "higher" and "smaller” n values (incident
radiation is from within the n, material). Allowing for energy incident
at directions larger than the angle for total reflection, the p(n) for
diffuse radiation propagating from a higher to a smaller refractive
index matenal is found from Richmond (1963),

p(n) = 1-%[1—R(n)] nsn/n (20)
n



Two-Flux Method for Two Spectral Bands in Each Layer
of a Two-Layer Composite

A two-band calculation in each layer is used to illustrate the
spectral application of the two-flux method for a two-layer composite.
The S and L designate bands with small and large frequencies. For a
quantity such as G,(x,v) the band notation is

GS(x) = fov‘Gv(x,v)dv . GL(x)= f.Gv(x,v)dv

For a two-band calculation each of Egs. (12) has two parts, one for
each frequency range. For example, Eq. (12a) in dimensionless form
gives in the small and large frequency ranges,

1-p, . 1+p, _

GS,(0) = 4——2 8,7 - 2——>§5,,(0) (21a)
1-p, 1-p,

~ l— p. - [] -~

GL,(©0) = 4——2 Ly~ 2 4(0) (21b)

Py

where the p are independent of v. Similar relations are written from
Eq. (12b) for GS,(I) and 'GL,(I) at the outer boundary of the second
layer. Equation (16) for ,, contains a contribution from each of the
two bands, so for a two-layer composite

i §

[GSJ(O)-C'}SJ(I) . 6%0)-611(1)

LN B | N, Nieop | (22)
+ l' tp* qS“(O)#qI..n(O) + qsn(l)-fql.ﬂ(l)}
H, H,

This also occurs in Eq. (6) for the temperature distribution in cach
layer,

tj(xj)'_ M 25_2. q“Xj*CON j=12 (23)

’ 3, N 3x, L
Equation (8) for the radiative flux is written for each band in cach
layer. For the band with small frequencies in cither layer (j = 1,2),

384X = S0+ xpl1 - n,,)f Xany ' ROFSEK)- Gs,(x,)]dx, 24)

The qL,(X;) for the large frequency band is similar. The FS(X)) is
the fraction of blackbody emission in the small frequency range
corresponding to the temperature Ti(x) = {(X))T,,.

The change in G when crossing the internal interface is written for
cach of the bands. For example for the small frequency range, from
Eq. (14a),

Gs

58,(1)- 2 : 455,,1) @s)

d

The normalization factor in Eq. (17) is written for a two layer
composite in each of the bands. For the small frequency band,

1-p,
1-p4

1 P
#3548 X)X 02 =

3

1.
“D,sf0 S ,(X X,

*P4a.
a8, (1)
NORS = d

(26)
1-p, -

GSI(O) Gs,(1)

The integration constants in Eq. (18) are written in cach of the two
layers as (including contributions from both bands),

38,000+ ALy()- Gy |, 68, L)

CON, =N, |1+ (27a)
H, 35 3y,
AN <E 4 _ 853 (1)-G |, G8,(1) . GL,(1)
CON:'%( Nz tp }{z 35,‘ 3‘1}"- (27b)

The solution by iteration follows the same steps outlined for gray
layers except there are now two §(X) in each layer, one for each
spectral band. Following the procedure for the gray case, calculations
are made in each band. The bands contribute to the temperature as
given by Eq. (23). The iteration begins by estimating §S(X) and
qL,(X) for cach band by taking into account that 4,(X) tends to be
small in a band where Kk, is large, and that the radiative energy
distribution in the bands shifts to smaller v as t(X) decreases.
Converged solutions for the two-flux method using the trapezoidal rule
for integration required up to 5 minutes on a VAX computer. The
exact numerical solution required about twice that time or longer.

Two-Layer Solution Using the Two-Flux Method in the

First Layer and the Diffusion Method in the Second Layer
When the optical thickness of a layer is large, the radiative

 diffusion method is very useful for making predictions for cither a gray
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or spectral layer (Sicgel and Spuckler, 1994). A two-layer gcometry
is considered here with an optical thickness of about 20 or less in each
of the bands of the first layer, and with a larger optical thickness in the
second layer. The two-flux method is used in the first layer for both
spectral bands. The sccond layer is gray and is analyzed with the
diffusion method. The analysis shows how the two-flux method is
joined with a diffusion solution. The required relations draw upon the
previous two-flux analysis, but there are several new features. ’

The first step in the iterative solution is to use Egs. (21a, b) to
calculate GS,(O) and GL ,(0) at the outer boundary of the first layer for
cach of the spectral bands. The radiative energy balance at the first
surface of the sccond layer, X, = 1, is then used to obtain relations for
Gs (1) and GL,(l) Since the second layer is gray with radiative
diffusion this balance gives,

dn(1) = (1-p 0t (0) + p (1) .

Equations (2a,b) are used to climinate § and §" and the result is
written for each band to give,

Gs,(1) = 400 [L,(O)T ‘,]+2 (284)

P
—§5,(1)
-P.



~ 1+ po e
&L,(1) = antHO)FL [t,(O)T'l1+2T_—p—qu(1) (28b)

where the FS and FL arc blackbody fractions that depend on the
temperaturcs shown and on the cutoff frequency of the bands.
Equations (28a,b) depend on the interface temperature t,(0) which is
an unknown; hence the GS,(1) and GL,(I) must be determined
simultancously with Eqs. (29a,b,c) that follow.

A set of three simultancous equations is now developed. In 2
similar manner to Eq. (22) the two-flux relation for g, in the first layer
is written as

Gs,(0)-G8,(1) GL,(0)-GL (1)

3N %p s N,
3S.(0)+ 4L ,(0)
. 4S,(0)+ 3L ( ¢ 1-1,0)
. H, (299)
= a
St T
HI Nl

The combination of conduction and radiative diffusion across the
second layer gives a relation for gy, 88 derived in Siegel and Spuckler
(1994),

4n 2
2 [0t (1))
3!:1,z

Gy = No[1(0) - (1] (29Y)

The convective and radiative energy balance at the outside boundary
X, = 1 of the second layer gives,

4, = Hylt) - tol+ (1- p Jng [5() - &5) 299)
Using Eqs. (28ab) as constraints, Egs. (29a,b,c) arc solved
simultancously for the interface and boundary temperatures 1,(0), and
t,(1), of the diffusion layer, and the heat flow §, through the
composite. The temperature distribution in the second layer is then
calculated by solving Eq. (30) numerically for t,(X;). This was derived
in Siegel and Spuckler (1994) by using radiative diffusion in the
energy equation,
4n; g, (1-X
ok - iy - w82
3N %, N,
2

tz(xg) - lz(l)"' (30)

Converged solutions using the trapezoidal rule required less than 1
minute on a VAX computer; exact numerical solutions took about 20
times longer.

RESULTS AND DISCUSSION

The two-flux method was developed in Sicgel and Spuckler (1994)
for a single gray layer with refractive index n > 1 and cxternal
convective and radiative conditions. Excellent agrecement was found
with numerical solutions of the exact radiative transfer equations. The
two-flux method is further developed here for multiple layers that are
cither gray or have two spectral bands in cach laycr. An extension is
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FIG. 2 TWO-FLUX RESULTS IN COMPOSITE OF TWO
GRAY LAYERS SHOWING EFFECT OF A RADIATIVE HOT
SIDE SURROUNDING TEMPERATURE DIFFERENT FROM
THE GAS TEMPERATURE. COMPARISONS ARE SHOWN
WITH NUMERICAL SOLUTIONS: n,=15,n,=3, 8% =1.0"-
1.4%, &, = 0.25% t,, = 1, ;= 0.25,H, = H; = 1, N, =N, = 0.1.

also made to generalize the results for the radiative boundary condition
on the hot side of the composite. The incident radiative flux on the hot
side is q% = oT*,, which is the flux from blackbody surroundings with
an effective temperature T,,. In Siegel and Spuckler (1994) the results
are for T, = T, where T, is the temperature of the gas providing
convective heating or cooling on the hot side atx, = 0. In the results
that follow, the T,, can be greater or less than T,,. This shows the
effect of the gas either cooling or heating the surface relative to the
radiative cnergy being supplied.

Two-Flux Results for a Composite of Two Gray Layers
Figure 2 shows two-flux results for a two-layer composite with the

first and second layers having optical thicknesscs of 1 and 10 and
refractive indices of 1.5 and 3. The first layer, that is exposed to the
radiation on the hot side, is somewhat optically thin. For the results
shown T,/T,, is 1.0, 1.2 and 1.4. For T,/T,; = 1.2 and 1.4 there is
sufficient radiative absorption within the first layer that the temperature
is a maximum within that layer. Some of the absorbed radiation is
being removed by convection at the boundaries. This results in a large
temperature change near the boundary that can produce thermal
stresses. For T,/T,, = 1 the gas temperature is the same as the
radiative surroundings and the temperaturc gradient is reversed at the
hot surface. This is the result of cooling by radiation and conduction
through the entire composite by the lower temperature gas and
environment at the outside boundary of the second layer.
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FiG. 3 COMPARISONS OF TWO-FLUX RESULTS WITH
EXACT NUMERICAL SOLUTIONS OF TRANSFER
EQUATIONS FOR COMPOSITE OF THREE GRAY LAYERS:
n=n=15n,=3 ¢,=1and 1.2', §,=025"t,,= 1, t;; =
0.25, H, = Hy=1,N,=N;=0.1,N,=02.

For some of the cases comparisons are shown with "exact"
numerical solutions of the radiative transfer equations using the
computer program of Spuckler and Siegel (1994). Very good
agreement is obtained for the temperature distributions and the total
heat flux by combined radiation and conduction. The two-flux

method yields good predictions for a composite of two layers and for

conditions when there is large incident radiation.

Two-Flux Results for a Composite of Three Gray Lavers

Figure 3 shows results for a composite of three gray layers with n
=1.5inlayers 1 and 3,and n =3 in layer 2. The optical thicknesses
range from 0.1 to 2 in layers 1 and 3, and from 0.2 to 4 in layer 2.
The "exact" numerical results were obtained by extending the
computer program of Spuckler and Siegel (1994) to three-layers. As
shown by the lower set of curves, that are for three different levels of
optical thickness, the two-flux method yields good temperature
predictions when x;, in cach layer is of order one. The two-flux results
follow the pronounced temperature curvature near the boundaries and
the internal interfaces. There is a little more deviation from the
numerical solution when the optical thicknesses are small as shown by
the two uppermost curves on the figure that are for T, /T,, = 1.2. The
heat flux through the layer by combined radiation and conduction is
predicted within 7% by the two-flux method as shown by the values
on the figure.

47

1.1 v T aa - Y
_ Ta1 /Tot
<°' 1.2
—~ 1.0r E
=

Dimensionless temperature, t(X)

2~-flux method ny=3
----- Exact numerical
N2=0. 1
0.5 R E—
0.0 0.5 1.0 1.5 2.0
X=x, /Dy X=1+x3/D;

Dimensionless position, X

FIG. 4 TWO-FLUX RESULTS IN COMPOSITE OF TWO
LAYERS, EACH WITH TWO SPECTRAL BANDS. EFFECT
OF HOT SIDE SURROUNDINGS TEMPERATURE
DIFFERENT FROM THE GAS. COMPARISONS WITH
NUMERICAL SOLUTIONS. OPTICAL THICKNESS OF
BANDS IN ORDER OF INCREASING FREQUENCY: a,D, =
5,0.1, a,,D,= 10, 0.2 and cutoff frequency, v /e, T , = 1/4000;
n=15n,=3&,=1and 1.2%, §,=0.25' t;, = 1,1, =0.25,
Hy=H,=1,N,=N,=0.1.

Two-Flux Results for a Two-Layer Composite with Two
Spectral Bands in each Layer

For the results in Fig. 4 the spectral absorption coefficient has two
bands in each of the layers: for small v, v /c,T,, < 174000, a,sD, =5
and a,sD, = 10, while for large v, v /e T, > 1/4000, a,,D, = 0.1 and
a,,D,=02. The sclected value of the cutoff frequency v divides the
blackbody spectrum at T,, into approximately two equal parts. The N, .
=N,, and is the same as on Fig. 2, and the temperature ratio T,,/T,, is
1 and 1.2. The temperature distributions show the same general trends
that were discussed for gray layers in Fig. 2. For the two-band
calculations the temperature distribution and total heat flux results
from the two-flux method compare very well with the numerical
solutions of the radiative transfer equations. The two-flux predictions
of the total heat flux are within about 2% of the numerical solution.

Resuits for a Two-Layer Composite with Two-Flux Method
in the First Layer and Diffusion in the Second Layer

In Fig. 5a the two layers are gray with a,D, = 1 and a,D, = 100.
The diffusion method can be applied with good accuracy in the second
layer. Temperature profiles are shown for T,/T,, in the range 0.8 to
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FIG. 5 TEMPERATURE DISTRIBUTIONS SHOWING
EFFECTS OF SURROUNDINGS TEMPERATURE USING
COMBINED TWO-FLUX AND DIFFUSION METHODS FOR
TWO-LAYERS: n, = 1.5, n,= 3, §°, = 0.8 - 1.4, @, = 0.25%,
th=1.4,=025H,=H, =1, N, =01,N,=1.
(a) BOTH LAYERS ARE GRAY: a,D, = 1 and 2,0, = 100.
(b) FIRST LAYER HAS TWO SPECTRAL BANDS: a,,D, =5,
a,D,= 0.1 with cutoff v /c,T,, = 1/4000; SECOND LAYER IS
GRAY: a,D, =100.
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FIG.6 EFFECT OF THERMAL CONDUCTIVITY IN SECOND
LAYER ON TEMPERATURE DISTRIBUTIONS IN TWO
GRAY LAYERS USING COMBINED TWO-FLUX AND
DIFFUSION ; n, = 1.5, n,=3, &, =134 @, =025 t, =1,
t,=025H,=H,=1,N,=0.1,N,=01,1,10.

1.4. For comparison two cases are given from the numerical solution
of the radiative transfer equations; very good agreement is obtained.
This, and the ability of the iterative combined two-flux diffusion
solutions to converge reasonably well, shows that the two-flux method
can be used quite well in layers that are not too optically thick (xp <
~20), and the solution joined to the diffusion method in an adjacent
optically thick layer. -

The general behavior of the results in Fig. 5a are similar to those
discussed for Fig. 2. Decreasing the temperature ratio T,,/T,
decreases the overall temperature in the layer while the profiles remain
similar. There is a change in slope from positive to negative at the hot
gas interface when T, /T,, is about 1.1. For a large optical thickness
in the second layer radiative transmission is diminished and conduction
has an important effect. This leads to profiles in the second layer that
tend to be more linear.

In Fig. 5a both layers are gray; in Fig. 5b results are given for the
first layer having two spectral bands so that for small v, v /c,T,, <
1/4000, a,sD, = 5, while for large v, v Je,T,, > 1/4000, a,, D, = 0.1
The sclected value of the cutoff frequency v, divides the blackbody
spectrum at T, into approximately two equal parts. The results have
the same gencral behavior as in Fig. 5a and the two-flux method is
again in good agreement with the numerical solutions of the radiative
transfer cquations.

The results in Fig. 5a are extended in Fig. 6 to show the effect of
changing the thermal conductivity in the second layer. The conduction
parameter isN, = 1 in Fig. 5a, and this is compared in Fig. 6 to results
forN; = 0.1 and 10. A large N, enhances conduction through the
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FIG. 7 EFFECT OF SCATTERING ALBEDO ON
TEMPERATURE DISTRIBUTIONS FOR COMBINED TWO-
FLUX AND DIFFUSION METHODS IN TWO-LAYER
COMPOSITE: n,=15,n,=3, @, = 1.3, ;=025 1, =1,
t,=0.25 H =H,=1,N,=0.1, N, = 1.

second layer and results in reduced temperatures in the first layer
including a reduced temperature at the surface exposed to the hot
environment.

Effect of Scattering in the First Layer of a Two-Layer
Composite Using Combined Two-Flux and Diffusion

Methods

The results in Figs. 5 and 6 are without any scattering. Figure 7
shows the effect of having large scattering so the scattering albedo Q,
is from 0.9 to 1.0 (the limit with no absorption). The results are
compared with the case for absorption only, Q, =0. Since the optical
thickness is kept constant, increasing the albedo corresponds to
decreased absorption and the temperature profile in the first layer
approaches a straight linc for conduction only. There is radiation
going from the hot side environment through the first layer and then
being absorbed at the internal interface; for very large scattering the
temperature maximum is then at or near the internal interface. The
results show good agreement with numerical solutions of the transfer
cquations indicating that scattering can be included with good
accuracy in the two-flux method.

CONCLUSIONS

The prediction of temperature distributions and heat transfer is
carried out in composite semitransparent layers heated on both sides
by radiation and convection. The external conditions are such that the
boundary temperatures are not specified and must be determined by
the solution. The layers in the composite have differing refractive
indices that are larger than one, and isotropic scattering is included.
Two methods were developed for performing spectral calculations in
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multilayered composites. The two-flux method was devcloped for
multilayer composites of threc layers and was found to give good
agreement with exact numerical solutions for all conditions considered.
When one layer in a composite is optically thick thc theory was
developed to use the diffusion method in that layer and join it to the
two-flux method used in the other layers. This gives better
convergence than using the two-flux method in an optically thick layer.
When the hot surroundings are at a different temperature than the
gas on the hot side, there can be large temperature gradients near the
hot side surface that can cause thermal stresses. If the hot
surroundings are at a higher temperature than the gas on the hot side,
the maximum temperature can occur in the interior of the material
rather than at the surface. This can be important if the material is
operating near its upper temperature limit for adequate strength.
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